organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(\pm) -syn-Isopropyl 4-(1,1,1,3,3,3-hexafluoropropan-2-yloxy)-1-hydroxy-3methyl-2-(prop-1-ynyl)cyclopent-2-enecarboxylate

Annika Gille, Markus Schürmann, Hans Preut* and Martin Hiersemann

Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany Correspondence e-mail: hans.preut@udo.edu

Received 5 June 2009; accepted 16 June 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.106; data-to-parameter ratio = 13.2.

The title compound, C₁₆H₁₈F₆O₄, was obtained through an unprecedented one-pot reaction sequence involving a Gosteli-Claisen rearrangement and a cycloisomerization. The constitution and relative configuration were determined by single-crystal X-ray diffraction analysis. In the crystal, molecules are connected via O-H ··· O hydrogen bonds.

Related literature

For the preparation, see: Neises & Steglich (1978); Hiersemann (2000). For details of the Gosteli-Claisen rearrangement, see: Gosteli (1972); Landor & Black (1965).

Experimental

Crystal data

$C_{16}H_{18}F_6O_4$	$\gamma = 96.955 \ (5)^{\circ}$
$M_r = 388.30$	V = 912.03 (10) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 6.0166 (4) Å	Mo $K\alpha$ radiation
b = 11.9075 (6) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 13.2798 (8) Å	T = 173 K
$\alpha = 104.600 \ (5)^{\circ}$	$0.42 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 91.775 \ (5)^{\circ}$	
, , , ,	

Data collection

Oxford Diffraction Xcalibur S CCD	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis RED; Oxford	
Diffraction, 2008)	
$T_{\min} = 0.944, T_{\max} = 0.975$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	240 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
3175 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

7349 measured reflections 3175 independent reflections

 $R_{\rm int} = 0.026$

2089 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O3^i$	0.84	2.10	2.8431 (17)	148
Symmetry code: (i)	-r - v - z			

metry code: (i) -x, -y,

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2521).

References

- Gosteli, J. (1972). Helv. Chim. Acta, 55, 451-460.
- Hiersemann, M. (2000). Synthesis, pp. 1279-1290.
- Landor, S. R. & Black, D. K. (1965). J. Chem. Soc. pp. 6784-6788.
- Neises, B. & Steglich, W. (1978). Angew. Chem. 90, 556-557.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1660 [doi:10.1107/S1600536809023162]

(±)-*syn*-Isopropyl 4-(1,1,1,3,3,3-hexafluoropropan-2-yloxy)-1-hydroxy-3-methyl-2-(prop-1-ynyl)cyclopent-2-enecarboxylate

A. Gille, M. Schürmann, H. Preut and M. Hiersemann

Comment

For the preparation of the title compound (\pm) -(I) a propargyl vinyl ether (II) was synthesized from 2-butin-1-ol using an etherification with bromoacetic acid, an esterification under Steglich's conditions (Neises & Steglich, 1978) and an aldol condensation (Hiersemann, 2000). An unprecedented one-pot reaction sequence involving an uncatalyzed Gosteli-Claisen rearrangement (Gosteli, 1972) of the propargyl vinyl ether (II) (Landor & Black, 1965) and a cycloisomerization under incorporation of a solvent molecule provided (I) as a colourless solid. Fig. 1 depicts the constitution and relative configuration of the isolated diastereomer (I).

Experimental

The title compound (I) was synthesized according to the following procedure. A solution of (II) (0.044 g, 0.2 mmol) in dry hexafluoroisopropanol (0.6 ml) was stirred at 333 K for 23 h. The solvent was removed under reduced pressure. Flash chromatography (isohexane/ethyl acetate 100/1 to 50/1 to 20/1) afforded (I) as a single diastereomer (0.026 g, 0.07 mmol, 34%) and 37% of the starting material (II). Single crystals of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate to yield colorless cuboids: mp 385 K; R_f 0.32 (cyclohexane/ethyl acetate 5/1); ¹H NMR (CDCl₃, 400 MHz, δ): 1.23 (d, J = 6.3 Hz, 3H, 8-H), 1.26 (d, J = 6.3 Hz, 3H, 8-H), 1.91 (s, 3H, 12-H), 2.01 (s, 3H, 11-H), 2.03 (dd, J = 13.6, 5.9 Hz, 1H, 5-H), 2.86 (dd, J = 13.6, 7.0 Hz, 1H, 5-H), 3.76 (br.s, 1H, –OH), 4.23 (sep, J = 5.9 Hz, 1H, 13-H), 4.67 (t, J = 5.9 Hz, 1H, 4-H), 5.06 (sep, J = 6.3 Hz, 1H, 7-H); ¹⁹F NMR (CDCl₃, 282 MHz, δ): (-77.0)-(-76.7) (m, 6 F); ¹³C NMR (CDCl₃, 101 MHz, δ): 4.8 (11-CH₃), 13.3 (12-CH₃), 21.7 (8-CH₃), 21.8 (8-CH₃), 42.7 (5-CH₂), 70.6 (7-CH), 71.6 (9-C), 76.0 (sep, J = 32.6 Hz, 13-CH), 83.1 (1-C), 88.9 (4-CH), 94.5 (10-C), 121.2 (q, J = 283.0 Hz, 14-C), 121.8 (q, J = 283.0 Hz, 14-C), 126.5 (2-C), 146.9 (3-C), 173.6 (6-C); IR (cm⁻¹): 3485(br,s) (v O—H, OH in H-bridges), 2990(m) 2940(m) 2920(m) (v_{as,s} C—H, CH₂, CH₃, CH), 2230(w) (v C=C), 1715(s) (v C=O, ester), 1635(m) (v C=C), 1380(m) (δ_8 C—H, CH₃), 1295(s) (v C—O, ester), 1240(s) 1230(s) 1220(s) (v C—F), 1185(s) 1120(s) 1105(s) (v C—O, ester); Anal. Calcd. for C₁₆H₁₈F₆O₄: C,49.5; H, 4.7; Found: C, 49.1; H, 4.7; M = 388.30 g/mol.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.

(±)-syn-Isopropyl 4-(1,1,1,3,3,3-hexafluoropropan-2-yloxy)-1-hydroxy- 3-methyl-2-(prop-1-ynyl)cyclopent-2-enecarboxylate

Crystal data

$C_{16}H_{18}F_6O_4$	Z = 2
$M_r = 388.30$	$F_{000} = 400$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.414 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.0166 (4) Å	Cell parameters from 3408 reflections
b = 11.9075 (6) Å	$\theta = 2.7 - 25.0^{\circ}$
c = 13.2798 (8) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\alpha = 104.600 \ (5)^{\circ}$	<i>T</i> = 173 K
$\beta = 91.775 \ (5)^{\circ}$	Block, colourless
$\gamma = 96.955 \ (5)^{\circ}$	$0.42 \times 0.20 \times 0.18 \text{ mm}$
$V = 912.03 (10) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer	3175 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2089 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
Detector resolution: 16.0560 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 173 K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)	$k = -13 \rightarrow 14$
$T_{\min} = 0.944, T_{\max} = 0.975$	$l = -15 \rightarrow 11$
7349 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.0599P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\rm max} < 0.001$
3175 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
240 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Prima Extinction correction: none methods

Special details

Experimental. CrysAlis RED (Oxford Diffraction 2008) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
F1	0.8004 (4)	0.56391 (17)	0.16252 (16)	0.1130 (8)
F2	1.0918 (3)	0.49063 (18)	0.10772 (12)	0.1036 (7)
F3	0.7665 (3)	0.39187 (15)	0.06173 (11)	0.0842 (6)
F4	1.0556 (2)	0.43622 (12)	0.40071 (10)	0.0537 (4)
F5	0.9672 (2)	0.59099 (11)	0.36511 (11)	0.0631 (5)
F6	1.2566 (2)	0.51846 (13)	0.30212 (11)	0.0608 (4)
01	0.0648 (2)	0.15814 (11)	0.13523 (10)	0.0286 (4)
H1	0.0264	0.1079	0.0786	0.043*
O2	0.6874 (2)	0.38842 (11)	0.26452 (11)	0.0310 (4)
O3	0.1934 (2)	-0.05252 (12)	0.05543 (11)	0.0406 (4)
O4	0.4173 (2)	-0.03491 (12)	0.19701 (11)	0.0391 (4)
C1	0.6115 (3)	0.26537 (16)	0.25431 (15)	0.0243 (5)
H1A	0.7429	0.2231	0.2609	0.029*
C2	0.4539 (3)	0.25339 (16)	0.33674 (15)	0.0243 (5)
C3	0.2714 (3)	0.17686 (16)	0.29615 (15)	0.0231 (4)
C4	0.2677 (3)	0.13463 (16)	0.17825 (14)	0.0227 (4)
C5	0.4762 (3)	0.20733 (17)	0.15116 (15)	0.0293 (5)
H5A	0.5661	0.1562	0.1028	0.035*
H5B	0.4311	0.2673	0.1177	0.035*
C6	0.9030 (3)	0.41341 (17)	0.23280 (16)	0.0299 (5)
H6	0.9684	0.3384	0.2098	0.036*
C7	0.8883 (5)	0.4666 (2)	0.1413 (2)	0.0605 (8)
C8	1.0461 (4)	0.4918 (2)	0.32484 (18)	0.0397 (6)
C9	0.5107 (3)	0.31553 (18)	0.44862 (15)	0.0367 (6)
H9A	0.3943	0.2902	0.4912	0.055*
H9B	0.5193	0.4002	0.4574	0.055*
H9C	0.6557	0.2970	0.4708	0.055*
C10	0.0936 (3)	0.13487 (17)	0.35228 (15)	0.0256 (5)
C11	-0.0581 (3)	0.09773 (18)	0.39548 (16)	0.0318 (5)
C12	-0.2433 (4)	0.0527 (2)	0.44912 (19)	0.0486 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H12A	-0.2256	-0.0270	0.4525	0.073*
H12B	-0.3858	0.0518	0.4109	0.073*
H12C	-0.2428	0.1032	0.5200	0.073*
C13	0.2847 (3)	0.00474 (17)	0.13700 (15)	0.0237 (5)
C14	0.4642 (4)	-0.15683 (18)	0.16071 (17)	0.0392 (6)
H14	0.3778	-0.1949	0.0926	0.047*
C15	0.7079 (4)	-0.1520 (2)	0.1452 (2)	0.0602 (8)
H15A	0.7475	-0.1045	0.0963	0.090*
H15B	0.7441	-0.2315	0.1168	0.090*
H15C	0.7929	-0.1168	0.2121	0.090*
C16	0.3840 (5)	-0.2186 (2)	0.2411 (2)	0.0710 (9)
H16A	0.4691	-0.1819	0.3078	0.107*
H16B	0.4064	-0.3011	0.2184	0.107*
H16C	0.2241	-0.2131	0.2495	0.107*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.179 (2)	0.0561 (12)	0.1164 (16)	0.0058 (12)	-0.0384 (15)	0.0547 (11)
F2	0.1085 (14)	0.1364 (17)	0.0573 (11)	-0.0682 (13)	0.0018 (10)	0.0494 (11)
F3	0.1084 (12)	0.0924 (13)	0.0418 (9)	-0.0499 (10)	-0.0191 (9)	0.0316 (8)
F4	0.0516 (8)	0.0668 (10)	0.0425 (8)	-0.0019 (7)	-0.0024 (6)	0.0191 (7)
F5	0.0721 (9)	0.0333 (8)	0.0679 (10)	0.0027 (7)	0.0029 (8)	-0.0145 (7)
F6	0.0357 (8)	0.0757 (10)	0.0675 (10)	-0.0151 (7)	0.0060 (7)	0.0220 (8)
01	0.0311 (7)	0.0296 (8)	0.0227 (8)	0.0091 (6)	-0.0052 (6)	0.0008 (6)
O2	0.0303 (8)	0.0201 (7)	0.0417 (9)	0.0021 (6)	0.0045 (6)	0.0069 (6)
O3	0.0513 (9)	0.0306 (8)	0.0333 (9)	0.0110 (7)	-0.0156 (8)	-0.0043 (7)
O4	0.0503 (9)	0.0288 (8)	0.0346 (9)	0.0142 (7)	-0.0144 (7)	-0.0006 (7)
C1	0.0238 (10)	0.0183 (10)	0.0301 (11)	0.0032 (8)	0.0018 (9)	0.0050 (8)
C2	0.0275 (10)	0.0239 (10)	0.0219 (11)	0.0061 (8)	0.0003 (9)	0.0058 (8)
C3	0.0251 (10)	0.0231 (10)	0.0214 (10)	0.0055 (8)	0.0020 (8)	0.0051 (8)
C4	0.0215 (10)	0.0265 (10)	0.0198 (10)	0.0046 (8)	0.0000 (8)	0.0050 (8)
C5	0.0327 (11)	0.0312 (11)	0.0228 (11)	-0.0001 (9)	0.0052 (9)	0.0065 (9)
C6	0.0355 (11)	0.0199 (10)	0.0337 (12)	-0.0011 (8)	0.0092 (10)	0.0073 (9)
C7	0.0795 (19)	0.0498 (18)	0.0488 (17)	-0.0232 (15)	-0.0063 (15)	0.0228 (14)
C8	0.0365 (13)	0.0399 (14)	0.0404 (14)	-0.0015 (10)	0.0045 (11)	0.0089 (11)
C9	0.0404 (12)	0.0375 (13)	0.0276 (12)	0.0012 (10)	-0.0024 (10)	0.0022 (10)
C10	0.0291 (11)	0.0266 (11)	0.0219 (11)	0.0053 (9)	-0.0001 (9)	0.0070 (9)
C11	0.0309 (12)	0.0387 (13)	0.0294 (12)	0.0042 (10)	0.0011 (10)	0.0157 (10)
C12	0.0402 (13)	0.0657 (17)	0.0502 (16)	0.0040 (12)	0.0107 (12)	0.0342 (13)
C13	0.0183 (9)	0.0294 (11)	0.0221 (11)	0.0012 (8)	0.0025 (9)	0.0052 (9)
C14	0.0536 (14)	0.0256 (12)	0.0372 (13)	0.0147 (10)	-0.0072 (11)	0.0026 (10)
C15	0.0656 (17)	0.0441 (15)	0.078 (2)	0.0211 (13)	0.0294 (15)	0.0188 (14)
C16	0.079 (2)	0.0405 (15)	0.100 (2)	0.0080 (14)	0.0324 (18)	0.0276 (16)

Geometric parameters (Å, °)

F1—C7	1.302 (3)	С5—Н5А	0.9900
F2—C7	1.339 (3)	С5—Н5В	0.9900

F2 07	1 220 (2)	0(0)	1 507 (2)
F3	1.329 (3)	C6-C8	1.507 (3)
F4	1.341 (3)	C6C7	1.510 (3)
F5—C8	1.319 (2)	С6—Н6	1.0000
F6—C8	1.330 (2)	С9—Н9А	0.9800
01	1.419 (2)	С9—Н9В	0.9800
OI—HI	0.8400	С9—Н9С	0.9800
02—C6	1.397 (2)	C10—C11	1.192 (3)
O2—C1	1.452 (2)	C11—C12	1.461 (3)
O3—C13	1.200 (2)	C12—H12A	0.9800
O4—C13	1.318 (2)	C12—H12B	0.9800
O4—C14	1.474 (2)	C12—H12C	0.9800
C1—C2	1.492 (3)	C14—C15	1.483 (3)
C1—C5	1.528 (3)	C14—C16	1.502 (4)
C1—H1A	1.0000	C14—H14	1.0000
C2—C3	1.342 (2)	C15—H15A	0.9800
С2—С9	1.492 (3)	C15—H15B	0.9800
C3—C10	1.434 (3)	C15—H15C	0.9800
C3—C4	1.517 (3)	C16—H16A	0.9800
C4—C13	1.522 (3)	C16—H16B	0.9800
C4—C5	1.541 (3)	C16—H16C	0.9800
C4—O1—H1	109.5	F5—C8—F4	106.86 (19)
C6—O2—C1	115.42 (14)	F6—C8—F4	106.70 (18)
C13—O4—C14	118.33 (14)	F5—C8—C6	113.48 (18)
O2—C1—C2	109.65 (14)	F6—C8—C6	112.73 (19)
O2—C1—C5	112.11 (17)	F4—C8—C6	109.13 (18)
C_{2} $-C_{1}$ $-C_{5}$	105 10 (14)	С2—С9—Н9А	109.5
Ω_{2} C1 $-$ H1A	110.0	С2—С9—Н9В	109.5
C^2 — C^1 — H^1A	110.0	H9A_C9_H9B	109.5
C_{2} C_{1} H_{1}	110.0	C2_C9_H9C	109.5
C_{3} C_{2} C_{9}	127 42 (19)	H9A - C9 - H9C	109.5
C_{3} C_{2} C_{3}	110 79 (16)	H9B_C9_H9C	109.5
$C_{2}^{0} = C_{2}^{0} = C_{1}^{1}$	121 69 (16)	$C_{11} - C_{10} - C_{3}$	107.5 177.6(2)
$C_{2} = C_{2} = C_{1}$	121.09(10) 126.87(18)	$C_{11} = C_{10} = C_{12}$	177.0(2)
$C_2 = C_3 = C_{10}$	112 41 (17)	$C_{10} = C_{11} = C_{12}$	1/9.0 (2)
$C_2 = C_3 = C_4$	112.41(17) 120.72(15)	C11_C12_H12A	109.5
C10-C3-C4	120.72(15)		109.5
01 - 04 - 03	108.58 (14)	H12A	109.5
01 - C4 - C13	108.35 (13)	CII—CI2—HI2C	109.5
C3—C4—C13	114.56 (17)	H12A—C12—H12C	109.5
01	112.55 (16)	H12B—C12—H12C	109.5
C3—C4—C5	103.23 (14)	03	124.56 (18)
C13—C4—C5	109.61 (15)	O3—C13—C4	122.24 (17)
C1—C5—C4	106.17 (16)	O4—C13—C4	113.11 (15)
C1—C5—H5A	110.5	O4—C14—C15	107.02 (18)
С4—С5—Н5А	110.5	O4—C14—C16	106.87 (18)
C1—C5—H5B	110.5	C15—C14—C16	115.0 (2)
C4—C5—H5B	110.5	O4—C14—H14	109.3
H5A—C5—H5B	108.7	C15—C14—H14	109.3
O2—C6—C8	108.60 (17)	C16—C14—H14	109.3
O2—C6—C7	109.24 (18)	C14—C15—H15A	109.5

supplementary materials

C8—C6—C7	113.26 (19)	C14—C15—H15B	109.5
O2—C6—H6	108.5	H15A—C15—H15B	109.5
С8—С6—Н6	108.5	C14—C15—H15C	109.5
С7—С6—Н6	108.5	H15A—C15—H15C	109.5
F1—C7—F3	108.0 (2)	H15B—C15—H15C	109.5
F1—C7—F2	106.8 (2)	C14—C16—H16A	109.5
F3—C7—F2	106.9 (2)	C14—C16—H16B	109.5
F1—C7—C6	113.5 (2)	H16A—C16—H16B	109.5
F3—C7—C6	110.3 (2)	C14—C16—H16C	109.5
F2—C7—C6	111.1 (2)	H16A—C16—H16C	109.5
F5—C8—F6	107.57 (18)	H16B—C16—H16C	109.5
C6—O2—C1—C2	149.56 (16)	O2—C6—C7—F1	60.4 (2)
C6—O2—C1—C5	-94.11 (18)	C8—C6—C7—F1	-60.8 (3)
O2—C1—C2—C3	133.92 (16)	O2—C6—C7—F3	-60.9 (3)
C5—C1—C2—C3	13.2 (2)	C8—C6—C7—F3	177.9 (2)
O2—C1—C2—C9	-49.5 (2)	O2—C6—C7—F2	-179.27 (18)
C5—C1—C2—C9	-170.23 (17)	C8—C6—C7—F2	59.6 (3)
C9—C2—C3—C10	-2.3 (3)	O2—C6—C8—F5	-58.6 (2)
C1—C2—C3—C10	173.99 (18)	C7—C6—C8—F5	63.0 (3)
C9—C2—C3—C4	178.06 (18)	O2—C6—C8—F6	178.82 (17)
C1—C2—C3—C4	-5.6 (2)	C7—C6—C8—F6	-59.6 (3)
C2—C3—C4—O1	-123.92 (17)	O2—C6—C8—F4	60.5 (2)
C10-C3-C4-O1	56.4 (2)	C7—C6—C8—F4	-178.0 (2)
C2—C3—C4—C13	114.83 (18)	C14—O4—C13—O3	2.1 (3)
C10—C3—C4—C13	-64.8 (2)	C14—O4—C13—C4	-174.52 (16)
C2—C3—C4—C5	-4.3 (2)	O1—C4—C13—O3	25.9 (2)
C10—C3—C4—C5	176.06 (16)	C3—C4—C13—O3	147.25 (18)
O2—C1—C5—C4	-134.32 (16)	C5—C4—C13—O3	-97.3 (2)
C2-C1-C5-C4	-15.27 (19)	O1—C4—C13—O4	-157.37 (16)
O1—C4—C5—C1	128.89 (16)	C3—C4—C13—O4	-36.0 (2)
C3—C4—C5—C1	12.02 (18)	C5—C4—C13—O4	79.5 (2)
C13—C4—C5—C1	-110.46 (17)	C13—O4—C14—C15	115.9 (2)
C1—O2—C6—C8	-119.38 (18)	C13—O4—C14—C16	-120.4 (2)
C1—O2—C6—C7	116.65 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$
O1—H1···O3 ⁱ	0.84	2.10	2.8431 (17)	148
Symmetry codes: (i) $-x, -y, -z$.				

Fig. 1